Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

نویسندگان

  • Tao Zhang
  • Gennian Ge
چکیده

One of the central tasks in quantum error-correction is to construct quantum codes that have good parameters. In this paper, we construct three new classes of quantum MDS codes from classical Hermitian self-orthogonal generalized Reed-Solomon codes. We also present some classes of quantum codes from matrix-product codes. It turns out that many of our quantum codes are new in the sense that the parameters of quantum codes cannot be obtained from all previous constructions. Index Terms Quantum MDS codes, generalized Reed-Solomon codes, quantum codes, matrix-product codes, Hermitian construction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

New constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes

Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. In this paper, we give two new constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes and obtain eighteen new classes of quantum MDS convolutional codes. Most of them are new in the sense that the parameters of the codes are different from all th...

متن کامل

Quantum Convolutional Codes Derived From Reed-Solomon and Reed-Muller Codes

Convolutional stabilizer codes promise to make quantum communication more reliable with attractive online encoding and decoding algorithms. This paper introduces a new approach to convolutional stabilizer codes based on direct limit constructions. Two families of quantum convolutional codes are derived from generalized Reed-Solomon codes and from ReedMuller codes. A Singleton bound for pure con...

متن کامل

Quantum generalized Reed-Solomon codes: Unified framework for quantum MDS codes

We construct a new family of quantum MDS codes from classical generalized Reed-Solomon codes and derive the necessary and sufficient condition under which these quantum codes exist. We also give code bounds and show how to construct them analytically. We find that existing quantum MDS codes can be unified under these codes in the sense that when a quantum MDS code exists, then a quantum code of...

متن کامل

List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes

A list decoding algorithm for matrix-product codes is provided when C1, . . . , Cs are nested linear codes and A is a non-singular by columns matrix. We estimate the probability of getting more than one codeword as output when the constituent codes are Reed-Solomon codes. We extend this list decoding algorithm for matrix-product codes with polynomial units, which are quasi-cyclic codes. Further...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1508.00978  شماره 

صفحات  -

تاریخ انتشار 2015